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— Gluons: mediator of the strong interactions
» Determine essential features of strong interactions
« Dominate structure of QCD vacuum (fluctuations in gluon fields)
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= QCD requires fundamental investigation via experiment




What Do We Know About Glue in Matter?

d’o?”"  Ana?,
dxdQ’ xQ"*

« Scaling violation: dF,/dInQ? and
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The Issue With Our Current Understanding
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The Issue With Our Current Understanding

Established Model:
Linear DGLAP evolution scheme
« Weird behavior of xG and F, from

HERA at small x and Q2
— Could signal saturation, higher
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twist effects, need for more/better 12-5;

data? 10l

» Unexpectedly large diffractive cross- ;

section 7o

5

more severe: )5
Linear Evolution has a built in high 0l

1

energy “catastrophe”

» xG rapid rise for decreasing x and
violation of (Froissart) unitary bound
« = must saturate

— What's the underlying dynamics?

20}
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H1+ZEUS
H1 NLO-QCD Fit 2000

xg=ax"*(1-x)° *(1+dvx+ex)

Q%=20 GeV?

FFN heavy-quark scheme

Q%=200 GeV? __ total uncert.
Hl exp. uncert.

ZEUS NLO-QCD Fit
(Prel.) 2001
xg=a=x%(1-x)°

RT-VFN heavy-quark scheme

exp. uncert.

= Need new approach



Non-Linear QCD - Saturation

proton
N partons new partons emitted as energy increases

could be emitted off any of the N partons

Regimes of QCD Wave Function

saturation

region In Q(Y)

Y =In1/x




Non-Linear QCD - Saturation

proton

« BFKL Evolution in x
= -E -

- eXpIOS|On of color field? N partons any 2 partons can recombine into one

Regimes of QCD Wave Function

* New: BKIJIMWLK

based models
— introduce non-linear effects
= saturation

c
9
(o))
o
— characterized by a scale 0
Q.(x,A) 5
)
-
e
c
o
=

saturation

region In Q(Y)

Y =In1/x

— arises naturally in the Color
Glass Condensate (CGC)
framework




e+A: Studying Non-Linear Effects

Scattering of electrons off nuclei:
 Probes interact over distances L ~ (2m,, x)™
« ForL>2R,~A"3 probe cannot distinguish

between nucleons in front or back of nucleon
* Probe interacts coherently with all nucleons

R ~ A1/3

2
1
_a, xG(Jg,QS) HERA: xG ~—~  Adependence: xG, ~ A
nR; -

O’

1/3
Nuclear “Oomph” Factor (0*)? =~ cQ? é
Pocket Formula: s N %

Enhancement of O, with A = non-linear QCD regime reached at

significantly lower energy in A than in proton
6



Hints for Saturation at HERA & Geometric Scaling?

 Crucial consequence of non-linear
evolution towards saturation:

Physics invariant along trajectories
parallel to saturation regime (lines
of constant gluon occupancy)

Scale with Q°/0° (x) instead of x

and O’ separately
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Marquet, Schoeffel, hep-ph/0606079
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Earlier Nuclear Experiments and Saturation

Nuclear Shadowing; Geometrical scaling
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Earlier Nuclear Experiments and Saturation

Nuclear shadowing:
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HERA & Saturation

HERA (ep):
Despite energy range far higher than EIC:

Gp(x, Q?) through scaling violation known only outside (or in a
very small region of) the saturation regime

Same for Gp(x, Q?) through F

o | Mo
HERA will provide a first direct e s
measurement of G(x, Q?) in the proton
BUT o)
Regime where non-linear 1
QCD (saturation phenomena) matter .| PRI o i o
(Q < Qs) out of reach! 00 00 fot w0 w7 ol

EIC: all relies on the Nuclear OOMPH (i.e. increasing Qs)
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The Oomph Factor

AN\ 1/3
* Nuclear Oomph Factor: (QA) NCQO( )

Enhancement of Qg with A

= non-linear QCD regime reached at significantly lower
energy in e+A than in e+p

s ~ (330 GeV)?2 Instead of extending x, Q reach
Hera ( 2) we increase Qs

sprc =~ (63 GeV) Q2 ~ sx: EIC factor 27 behind

SEIC 1 (10+100 GeV)

SHera 27

Q?(Hera) QA(EIC) — Q2 x it = c Q2 AY3 z iy

3
TEIC — THera " C A

SA 0.5% - 197 z@



State-of-the-Art Oomph

 The e+A program lives Here: protons for b=bmed
and dleS W|th the N; - Kowalski and Teaney
A ) Phys.Rev.D68:114005,2003
enhancement of Qs" over 2 |
Q<P o |
This factor is huge (500)
but

It's a model calculation!

« Assuming it's correct we

“reach” further compared | 20x25 = 500
to HERA by 500127 =18 | =~ “—
 (where we see no striking 0% 10° 10% 10° 1061/x

saturation effects)



Reaching Saturation: Oomph versus HERA

Beam \s seic/ “virtual” x

Energy (GeV) | SHERrA reach

(GeV) boost over
HERA at
Q2=const

2+100 28 1/140 4

10+100 63 1127 18

20+100 89 1/14 36

20+130 102 1/10 50

30+130 125 117 71

Numbers are rounded and approx. only

Y=In1/x

A
saturation R[N
region

c
2
o
o
—
o
=
et
©
=
3
)=
o
*
c
o)
c
A2

Note: We do not know (until we measured it) how far HERA was away from the
saturation physics regime

12
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In Q2
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Reach compared with previous facilities
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Staged option: begins to reach into the saturation regime for heavy nuclei
Experience with nuclei have shown that we need to reach deeply into a new

regime for assurance that the new regime has been reached

And, we need a safety margin (models can and have been wrong before)

13
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What is the Momentum Distribution of Gluons?

Gluon distribution G(x,Q?2)
— Shown here:
. Scaling violation in F,: 6F,/3InQ?
e F ~a,G(x,Q?)
— Other Methods:

« 2+1 jet rates (needs jet algorithm and modeling of
hadronization for inelastic hadron final states)

* inelastic vector meson production (e.g. JAp)

« diffractive vector meson production ~ [G(x,Q?)]?
—Active area of investigation
—See M. Lamont’s talk later today
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F,: Sea (Anti)Quarks Generated by Glue at Low x
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F, will be one of the

first measurements at
EIC

nDS, EKS, FGS:

pQCD based models with
different amounts of
shadowing

Syst. studies of F,(A,x,Q?):

= G(x,Q?) with precision

= distinguish between
models

y* y* 2
(1—y+7 SF(xQ >]




F,: measure glue directly

d’oc?”*  4ma

dxdQ* - xQ"’

F, ~a, G(x,Q?)
requires Vs scan, Q%/xs =y

s Assume:
L= 3.8103 cm2s
T =10 weeks

«duty cycle: 50%
L ~ 1/A (approx)
«[Ldt = 11 fb!

Plot contains:

[Ldt = 4/A fb1 (10+100) GeV
= 4/A fb-! (10+50) GeV
= 2/Afb ! (5+50) GeV

statistical error only

17
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Existing F, measurements: Hera

*Runs in 2007:

High s - E;=920 GeV (H1 =21.9 pb*")
Low s - Ex=460 GeV (H1 =12.4 pb™)
Medium s - E;=575 GeV (H1 = 6.2 pb™')
*Sensitivity to FLrequires high y

*Challenge - high y means low electron
energy

*HERA: F (H1) > F(Zeus) ?
limited to large Q (Q>Qs) x =10* ... 10"

sLarge errors!
H1 Preliminary F
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F,_ and Syst. Errors

e W/o at least a rough detector design and lots of simulations it is hard to

estimate sys. uncertainties

Simple estimate J. Dunlop/A. Bruell:
1% energy-to-energy normalization (only)
following discussions at MIT EIC Mtg.

*How realistic are the assumptions?
eCompare to current HERA studies ?

Conclusion from this study:
Dominated by sys. Uncertainties
Luminosity not the limit, but need
more detailed studies (w detector)

1.2

D_IG

L
T os

0.6 |

_ x=0.0006 |

—_10+100, 10+50; 5
L e

L

12|

x=0.02

1 10 102 1

Q2 (GeV?)

Q2 (GeV?)

Need to maximize y range, maximize range of s scanned
e.g. x=0.005, Q2= 2 GeV?2: y from 0.5 (2+100) to 0.03 (30+130)
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The Gluon Space-Time Distribution

* What we know is mostly the momentum distribution of glue
— How is the glue distributed spatially in nuclei?
— Gluon density profile: small clumps or uniform ?

» Various techniques & methods:

— Exclusive final states (e.g. vector meson production p, Jihp, DVCS)
« color transparency < color opacity

— Deep Virtual Compton Scattering (DVCS)
- Integrated DVCS cross-section: opycg ~ A3

— Measurement of structure functions for various mass numbers A
(shadowing, EMC effect) and its impact parameter dependence

« Promising direction: fundamentally new approach in nuclei
from which much can be learned even at the lower energies

20



Hadronization and Energy Loss

nDIS:

— Suppression of high-p; hadrons analogous but weaker than at RHIC

— Clean measurement in ‘cold’ nuclear matter

Fundamental question:

What is the mechanism for QCD energy
loss in matter?

When do colored partons get
neutralized?

Parton energy loss vs.
(pre)hadron absorption

+
R =
v 0.8

Energy transfer in lab rest frame
EIC: 10 <v <1600 GeV HERMES: 2-25 GeV

EIC: can measure heavy flavor energy loss

| HERMES

[ He, Ne prelim.
0.6

- - energy loss

Kr final

— absorption

0.2 0.4 0.6 0.8

Mass effects not understood at RHIC, control time scales
X range not required to be small, can start at 2+100

21
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Connection to p+A Physics

— e+A and p+A provide excellent

information on properties of gluons =
in the nuclear wave functions o3

1Ll

— Both are complementary and offer

the opportunity to perform stringent
checks of factorization/universality

100

0.1

10 |

F. Schilling, hex-ex/0209001

= H1 fit-2 —+- CDF data
e H1 fit-3 EX1257 GeV
E (Q%=75GeV?) 0.035 < £ < 0.095
It1<1.0GeV?

— H1 2002 5,P QCD Fit (prel.)

0.1

B

Breakdown of factorization (e+p
HERA versus p+p Tevatron) seen
for diffractive final states.
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Connection to p+A Physics

— e+A and p+A provide excellent
information on properties of gluons =

F. Schilling, hex-ex/0209001

in the nuclear wave functions o3 " Hifit-2 +J (CDF data
e H1 fit-3 EF"2 57 GeV
100 5 5
— Both are complementary and offer e (Q=75GeV")  0.035<8< 0-295
the opportunity to perform stringent It1<1.0 GeV
checks of factorization/universality 4L
T
1 L
—a— A
01k — H1 2002 5,0 QCD Fit (prel.)
M |
0.1
g B
Breakdown of factorization (e+p
—a— A

HERA versus p+p Tevatron) seen
for diffractive final states.



Connection to RHIC & LHC Physics

Matter at RHIC:
— thermalizes fast (t, ~ 0.6 fm/c)

— We don’t know why and how?

— Initial conditions? = G(x, Q2)
Role of saturation ?

— RHIC — forward region

— LHC — midrapidity

« bulk (low-p; matter) & semi-hard
jets

Jet Quenching:

— Need Refererence: E-loss in
cold matter

— No HERMES data for

e charm energy loss
* in LHC energy range

23

=5 GeV?)

R (x,Q°
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EIC provides new essential input:
* Precise handle on x, Q3
* Means to study exclusive effects
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Connections with

RHIC and LHC
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Saturation (initial state) effects
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Summary

EIC provides a chance to dive deeply into a fundamentally new
regime of one of the four basic forces, QCD

N%1o4; EIC
Issues: S b T e o0 cevn &,
Need to broaden and deepen [ = oow-moe A
measurements —— 2GeV +100 GeV/n //////x/
Diffraction 102k ¢ 7.
Jet-medium interactions o
10 ?Qi Ay o '///" /
Need to develop connections N
To RHIC/LHC )
To larger scientific w0 PANC
community b3 = ST
10°  10° 10" 10°  10% 10 1

What is the smoking gun for crossing the saturation scale?
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